Silver Nanoparticles as Nano Antenna for TiO<sub>2</sub> Activation and its Application in DSSC for Enhanced Performance
Keywords:
silver nanoparticles, Optical and morphological properties, Ag@P4VPAbstract
The plasmonic effects of silver nanoparticles with poly (4-vinylpyridine) as passivation nanostructure for simultaneous photon energy and electron management were investigated. SEM, UV-vis-NIR, were utilized to describe the optical and morphological properties of the prepared samples. As shown from the SEM results, the introduction of Ag@P4VP, enhances nucleation, prompting an increase in the rate of growth compared to the control. The UV-vis result demonstrates a redshift to higher wavelength, showing an increase in visible light absorption which is attributed to the intensified near field effect of the surface plasmon that emerges between TiO2 and Ag@P4VP. The functionalized samples were effectively introduced into DSSCs. The photovoltaic performances were evaluated under 100 mWcm-2 light intensity. The performance, particularly the photocurrent, and open circuit voltage of the DSSC containing Ag@P4VP NPs was remarkably enhanced by the AgNPs. The modified Ag@P4VP NPs photoanode demonstrates a short circuit current density (JSC) of 2.54 mAcm-2, a photovoltage (VOC) of 0.72 V yielding an efficiency of 1.09 %. This represents a 60.3 % enhancement in efficiency over the efficiency (0.68 %) of bare FTO without Ag@P4VP NPs.
References
D. Eli, A. A. Kassimu, B. O. Sherifdeen, “Surface-Enhanced Response of Silver Nanoparticles with SiO2 and TiO2 Core Shell for Enhanced dye Sensitized Solar Cells Performance: A Comparative Studies”, Journal of the Nigerian Association of Mathematical Physics 43 (2017) 311.
K. Nakata, A. Fujishima, “TiO2 photocatalysis: Design and application”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13 (2012) 169.
M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis”, Chemical Reviews 95 (1995) 69.
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Konto, P. S. M. Dunlop, J. W. Hamilton, J. A. Byrne, K. O’shea, M. H. Entezari, D.D Dionysiou, “A review on the visible light active titanium dioxide photocatalyst for environmental applications”, Applied Catalysis B: Environmental 125 (2012) 331.
S. Sontakke, C. Mohan, J. Modak, G. Madras, “Visible light photocatalytic inactivation of Escherichia Coli with combustion synthesized TiO2”, Chemical Engineering Journal 189 (2012) 101.
M. K. Seery, R. George, P. Floris, S. C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis”, Journal of Photochemistry and Photobiology: A Chemistry 189 (2007) 258.
J. C. Colmenares, M. A. Aramedia, A. Marinas, J. M. Marinas, F. J. Ubano, “Synthesis, Characterization and Photocatalytic activity of different metal-doped titania systems”, Applied Catalysis A: General 306 (2006) 120.
M. Y. Onimisi, D. Eli, S. G. Abdu, H. O. Aboh, J. Ezeoke, “Size effects of silver nanoparticles on the photovoltaic performance of dye sensitized solar cells”, American Chemical Science Journal, 13 (2016) 1.
P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, D. Laub, “Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO2 Nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution”, Journal of the American Chemical Society 126 (2004) 3868.
W. Choi, A. Termin, M. R. Hoffmann, “The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry 98 (1994) 13669.
C. Chambers, S. B. Stewart, B. Su, H. F. Jenkinson, J. R. Sandy, A. J. Ireland, “Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers”, Dental Materials 33 (2017) e115.
G. Kovacs, Z. Pap, C. Cotet, V. Cosoveanu, L. Baia, V. Danciu, “Photocatalytic, morphological and structural properties of the TiO2-SiO2-Ag porous structures based system”, Materials 8 (2015) 1059.
D. Eli, P. M. Gyuk, M. S. Ahmad G. I. Baba, S. H. Sarki, “Silver Nanoparticles as Artificial Antennas for Enhanced Light-Harvesting and Charge Transfer in Dye-Sensitized Solar Cells”, International Journal of Materials Science and Applications 5 (2016) 214.
E. Stathatos, T. Petrova, P. Lianos, “Study of the Efficiency of Visible-light photocatalytic degradation of Basic Blue Adsorbed on pure and doped mesoporous Titania Films”, Langmuir 17 (2001) 5025.
M. Jacob, H. Levanon, P. V. Kamat, “Charge distribution between UV-irradiated TiO2 and gold Nanoparticles: Determination of Shift in the Fermi Level”, Nano letters 3 (2003) 353.
P. V. Kamat, “Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles”, The Journal of Physical Chemistry B 106 (2002) 7729.
D. Eli, M. S. Ahmad, A. B. Bikimi, O. A. Babatunde, “Plasmonic Dye Sensitized Solar Cells Incorporated with TiO2-Ag Nanostructures”, International Research Journal of Pure and Applied Chemistry 11 (2016) 1.
D. Eli, M. Y. Onimisi, S. G. Abdu P. M. Gyuk, E. Jonathan, “Enhanced performance of a dye sensitized solar cell using silver nanoparticles modified photoanode”, Journal of Scientific Research & Reports 10 (2016) 1.
L. Shuhan, Z. Xiangyu, W. Bao, Q. Yu, L. Wenhui, Y. Hao, L. Nan, C. Mengwei, L. Haifei, Y. Yingping, “Influence of Ag Nanoparticles with Different Sizes and Concentrations Embedded in a TiO2 Compact Layer on the Conversion Efficiency of Perovskite Solar Cells”, Nanoscale Research Letters 13 (2018) 1.
W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells”, Science 356 (2017) 1376.
Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles”, RSC Advances 5 (2015) 11175.
H. Nourolahi, M. Bolorizadeh, A. Behjat, “Light absorption with branched gold cauliflower-like nanostructure arrays”, Vacuum, 123 (2015) 29.
H. Chen, L. Shao, Q. Li, J. Wang, “Gold nanorods and their plasmonic properties”, Chemical Society Reviews 42 (2013) 2679.
X. Huang, S. Neretina, M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications”, Advanced Materials 21 (2009) 4880.
V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal. “Graphene based materials: Past, present and future”, Progress in Materials Science 56 (2011) 1178.
W. S. Hummers, R. E. Offeman, “Preparation of graphitic oxide” Journal of the American Chemical Society 80 (1958) 1339.
D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii A, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, “Improved synthesis of graphene oxide” ACS Nano 4 (2010) 4806.
C. A. Castro, A. Jurado, D. Sissa, S. A. Giraldo, “Performance ofAg-TiO2 photocatalysts towards the photocatalyticdisinfection of water under interior-lighting andsolar-simulated light irradiations”, International Journal of Photoenergy, (2012) ID 261045.
Q. Xiang, J. Yu, B. Cheng, H. C. Ong, “Microwave-hydrothermalpreparation and visible-light photoactivity of plasmonicphotocatalyst Ag-TiO2 nanocomposite hollow spheres”, Chemical Asian Journal 5 (2010) 1466.
J. M. Hermann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 andAg-TiO2 coatings on quartz”, Applied Catalysis B 13 (1997) 219.
H. Xinggang, W. Xiaoling, L. Andong, “Studies on photocatalytic activity of Ag/TiO2 films”, Frontiers of Chemistry in China 4 (2006) 402.
C. Bohren, D. Huffman, “Absorption and Scattering of Light by Small Particles”, John Willey & Sons: New York, (1998).
U. Kreibig, M. Vollmer, “Optical properties of Metal Clusters”, Series in Material Science 25 (1995) 203.
K. Wongcharee, V. Meeyoo, S. Chavadej, “Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers”, Solar Energy Materials and Solar Cells 91 (2007) 566
C. Cheng, C. Lin, C. Shan, S. Tsai, K. Lin, C. Chang, S. Chien, “Platinum-graphene counter electrodes for dye sensitized solar cells”, Journal of Applied Physics, 114 (2013) 014503.
M. Jeng, Y. Wung, L. Chang, L. Chow, “Particle size effects of TiO2 layers on the solar efficiency of dye-sensitized solar cells”, International Journal of Photoenergy, (2013) 563897.
W. Yang X. Xu Z. Tu, Z. Li, B. You Y. Li, S. I. Raj, F. Ynag, L. Zhang S. Chen, A. Wang, “Nitrogen plasma modified CVD grown graphene as a counter electrodes for bifacial dye-sensitized solar cells”, Electrochemica Acta 173 (2015) 715.
A. Allegrucci, A. N. Lewcenko, A. J. Mozer, L. Dennany, P. Wagner, D. L. Officer, K. Sunahara, S. Mori, L. Spiccia, “Improved performance of porphyrin-based dye sensitized solar cells by phosphinic acid surface treatment”, Energy and Environmental Science 2 (2009) 1069.
J. K. Seo, J. Bong, J. Cha, T. Lim, J. Son, S. H. Park, J. Hwang, S. Hong, S. Ju, “Manipulation of graphene work function using a selfassembled monolayer”, Journal of Applied Physics 116 (2014) 084312.
F. Gossenberger, T. Roman, K. Forster-Tornigol, A. Grob, R. J. Behm, “Change of the work function of Platinum electrodes induced by halide adsorption”, Beilstein Journal of Nanotechnology 5 (2014) 152.
G. Boschloo, A. Hagfelt, “Characteristics of the iodide/triiodide redox Mediator in Dye Sensitized Solar Cells”, Accounts of Chemical Research 42 (2009) 1819.
F. Gong, H. Wang, Z. Wang, “Self-assembled monolayer of graphene /Pt as a counter electrode for efficient dye-sensitized solar cell”, Physical Chemistry Chemical Physics 13 (2011) 17676.
M. Yen, C. Teng, M. Hsiao, P. Kiu, W. Chuang, C. Ma, C. Hsieh, M. Tsai, C. Tsai, “Platinum nanoparticles/graphene composite catalyst as a novel composite counter electrode for high performance dye-sensitized solar cells”, Journal of materials chemistry 21 (2011) 12880.
G. Blanita, M. D. Lazar, “Review of graphene-supported metal nanoparticles as new and efficient heterogeneous catalyst”, Micro and Nanosystems 5 (2013) 138.
U. K. Sur, “Graphene: A rising star on the horizon of material science”, International Journal of electrochemistry, (2012) 237689.
G. Yue, J. Wu, Y. Xiao, M. Huang, J. lin, L. Fan, Z. lan, “Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells”, Electrochimica Acta 92 (2013) 64.
A. H. C. Neto, F. Guinea, N. Peres, K. Novoselov, A. Geim, “The electronic properties of graphene”, Reviews of Modern Physics 81 (2009) 109.
R. Garg, N. K. Dutta, R. Choudhury, “Work Function Engineering of Graphene”, Nanomaterials 4 (2014) 267.
L. Du, A. Furube, K. Yamamoto, K. Hara, R. Katoh, M. Tachiya, “Plasmon-induced charge separation and recombination dynamics in gold TiO2 nanoparticle systems: dependence on TiO2 particle size”, Journal of physical Chemistry C 113 (2009) 6454.
C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Solar Energy Materials and Solar Cells 61 (2000) 339.
K. Ishikawa, C. J. Wen, K. Yamada, and T. Okubo, “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” Journal of Chemical Engineering of Japan 37 (2004) 645.