Thermoelectric Transport Properties of Ternaries Mixed Chalcogenide Bi<sub>2</sub>Te<sub>2</sub> X (X= S And Se): A First Principle Study
Keywords:
Ternary mixed chalcogenides, Density functional theory, Electronic and thermo-electric transport propertiesAbstract
Thermoelectric transport properties of materials that possess a unique nature are of interest for many technological applications such as thermoelectric refrigerators and thermocouple. In this study, we have reported a theoretical investigation within the density functional theory (DFT) based on first principle calculation of the electronic and thermoelectric transport properties of ternary mixed chalcogenides Bi2Te2X (X=S and Se). The spin-orbit coupling (SOC) within the linear density approximation (LDA) is included during the electronic properties investigation. A semi-classical Boltzmann theory within a linear response method has been applied in investigating the transport properties of these compounds. The two compounds are found to have differences, both in electronic and transport properties despite their structural similarities. Results obtained from this study have been discussed and compared with a number of theoretical and experimental results of compounds with similar nature.
References
C. M. Bhandari and D. M. Rowe, ‘CRC Handbook of thermo-electric. CRC Press, Boca Raton, FL (1995) 239.
L. D Hicks and S. M. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor." Phy. Rev. B 24 (1993) 16631.
G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (2011) 101.
G. Alexander, M. Arndt and G. Gerlach, "Seebeck's effect in micromachined thermopiles for infrared detection. A review", Estonian Journal of Engineering 13 (2007) 338-354.
G. R Clóves, A. A. Silva, C. A. Silva, R. A. Vasconcellos, J. G. Ramos, and R. Luzzi. "The role of nonequilibrium thermo-mechanical statistics in modern technologies and industrial processes: an overview." Brazilian Journal of Physics 40 (2010) 63.
A. L. Efros, and M. Rosen, "The electronic structure of semiconductor nanocrystals", Annual Review of Materials Science 30 (2000) 475.
S. J. Sung, M. K. Choi, M. Han, K. Park, J. Kim, S. J. Lim, and Myunghwan, "n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates", Nano letters 12 (2012) 640.
Z. H. Ge, Y. H. Ji, Y. Qiu, X. Chong, J. Feng, & J. He. "Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process", Scripta Materialia 143 (2018) 90.
L. Müchler, F. Casper, B. Yan, S. Chadov, and C Felser. "Topological insulators and thermoelectric materials." Physica status solidi (RRL)–Rapid Research Letters 7 (2013) 91-100.
P. Ghaemi, R. S. Mong, and J. E Moore,"In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi2Te3 and Bi2Se3." Phys. Rev. lett. 105 (2010) 166.
A. Kerimova, N. A. Abdullayev, N. M. Abdullayev, K. Aliguliyeva, Y. G. Shim, K. Wakita, and S. Nemov. "Raman scattering and electric conductivity in Bi2 (Te0.9Se0.1)3 thin films." physica status solidi c 10 (2013) 997.
L. V. Prokofieva, D. A. Pshenay-Severin, P. P. Konstantinov, and A. Shabaldin, “Optimum composition of a Bi2Te3−xSex alloy for the n-type leg of a thermoelectric generator. Semiconductors” 43 (2009) 973.
A. N. Khrisanfovich, V. F. Bankina, L. V. Poretskaya, L. E. Shelimova, and E. V. Skudnov, Springer USA (1969) 159.
D. Y. Chung, K. S. Choi, L. Iordanidis, J. L. Schindler, P. W. Brazis, C. R. Kannewurf, and M. G. Kanatzidis, "High thermopower and low thermal conductivity in semiconducting ternary K− Bi− Se compounds. Synthesis and properties of β-K2Bi8Se13 and K2.5Bi8.5 Se14 and their Sb analogues", Chemistry of materials 9 (1997) 3060.
Z. Z. Luo, C. S. Lin, W. D. Cheng, W. L. Zhang, Y. B. Li, Y. Yang, and Z. Z. He, "From One-Dimensional Linear Chain to Two-Dimensional Layered Chalcogenides XBi4S7 (X= Mn, Fe): Syntheses, Crystal and Electronic Structures, and Physical Properties", Crystal Growth & Design 13 (2013) 4118.
L. Horvath, A. Magrez, M. Burghard, K. Kern, L. Forro, and B. Schwaller, "Evaluation of the toxicity of graphene derivatives on cells of the lung luminal surface", Carbon 64 (2013) 45.
P. Gehring, H. M. Benia, Y. Weng, R. Dinnebier, C. R. Ast, M. Burghard and K. Kern, "A natural topological insulator", Nano letters 13 (2013) 1179.
X. Huang, J. Guan, Z. Lin, B. Liu, S. Xing, W. Wang, and J. Guo,. "Topological insulator thin films of Bi2Te3 with controlled electronic structure", Advanced Materials 23 (2011) 2929.
S. Johnsen, S. C. Peter, S. L. Nguyen, J. H. Song, H. Jin, A. J. Freeman and M. G. Kanatzidis, "Tl2Hg3Q4 (Q= S, Se, and Te): high-density, wide-band-gap semiconductors." Chemistry of Materials 23 (2011) 4375.
H. Süssmann, and W. Heiliger. "Seebeck coefficient and electrical conductivity in p‐(Bi1− xSbx)2 Te3 at room temperature", Physica Status Solidi (a) 80 (1983) 535.
Z. Ferdows and R. Lake, "Thermoelectric properties of Bi2Te3 atomic quintuple thin films", Applied Physics Letters 97 (2010) 212.
Z. Wei, R. Yu, H. Zhang, X. Dai, and Z. Fang, "First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3", New Journal of Physics 12 (2010) 065.
S. Hongliang, D. Parker, M. Du, and D. J. Singh. "Connecting thermoelectric performance and topological-insulator behavior: Bi2Te3 and Bi2Te2Se from first principles", Phys. Rev. Applied 3 (2015) 014.
G. Paolo, S. Baroni, N. Bonini, M. Calandra, R. C. Cavazzoni, and D. Ceresoli "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials." Journal of physics: Condensed matter 21 (2009) 395.
J. Anubhav, and S. Ping Ong. "A. Jain, SP Ong, G. Hautier, W. Chen, WD Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and KA Persson, APL Mater. 1 011-002 (2013)", APL Mater. 1 (2013) 011002.
A. A. Ahmed, and A. Dal Corso, "Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules." Journal of Physics: Condensed Matter 23 (2011) 425
B. G Pfrommer, M. Côté, S. G. Louie, and M. L. Cohen. "Relaxation of crystals with the quasi-Newton method." Journal of Computational Physics 131 (1997) 233.
P. J. H. Denteneer, C. G. Van de Walle, and S. T. Pantelides, "Structure and properties of hydrogen-impurity pairs in elemental semiconductors", Phys. Rev. Lett. 62 (1989) 1884.
Y. L. Amy, and M. L. Cohen. "Prediction of new low compressibility solids." Science 245 (1989) 841.
J. P. Perdew, E. R. McMullen, and A. Zunger, "Density-functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge", Phys. Rev. A 23 (1981) 2785.
C. Xin, D. Parker, and D. J. Singh, "Acoustic impedance and interface phonon scattering in Bi 2 Te 3 and other semiconducting materials." Phys. Rev. B 87 (2013) 045.
W. Lin-Lin, and D. D. Johnson, "Ternary tetradymite compounds as topological insulators", Phys. Rev. B 83 (2011) 241.
N. Madhab, S. Xu, L. Andrew W. A. Petersen, R. Shankar, N. Alidoust and Chang Liu, "Topological surface states and Dirac point tuning in ternary topological insulators", Phys. Rev. B 85 (2012) 235.
A. Ana, M. Tran, A. Ubaldini, J. Teyssier, E. Giannini, D. Van Der Marel, P. Lerch, and C C. Homes, "Optical properties of Bi2Te2 Se at ambient and high pressures", Phys. Rev. B 86 (2012) 235.
J. Navratil, T. Plecháček, J. Horak, S. Karamazov, P. Lošt'ák, J. S. Dyck, W. Chen, and C. Uher, "Transport Properties of Bi2−xInxSe3 Single Crystals." Journal of Solid State Chemistry 160 (2001) 474.
H. Conyers, and E. Vogt, "Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering", Phys. Rev. 101 (1956) 944.
W. Kohn, "Shallow impurity states in silicon and germanium." In Solid state physics 5 (1957) 257-320.
B. N. Eric, B. S. Gazes, G. S. Crane, and D. A. Bennett, "Tests of the exponential decay law at short and long times", Phys. Rev.lett. 60 (1988) 22.
Z. J. Yue, X. L. Wang, Y. Du, S. M. Mahboobeh, Frank F. Yun, Z. X. Cheng, and S. X. Dou. "Giant and anisotropic magnetoresistances in p-type Bi-doped Sb2Te3 bulk single crystals", EPL (Europhysics Letters) 100 (2012) 17014.
G. Ximeng, D. Kim, Krishna C. Saraswat, and H-S. P. Wong. "Complex band structures: From parabolic to elliptic approximation", IEEE Electron Device Letters 32 (2011) 1296.
J. Changwook, R. Kim, and M. S. Lundstrom, "On the best bandstructure for thermoelectric performance: A Landauer perspective", Journal of Applied Physics 111 (2012) 113.
K. Wood and J. B. Pendry. "Layer method for band structure of layer compounds", Phys. Rev. Lett. 31 (1973) 1400.
S. Ajay, Z. Yanyuan, Y. Ligen, M. K. Aik, M. S. Dresselhaus, and Q. Xiong, "Enhanced Thermoelectric Properties of Solution-Grown Bi2Te3–xSex Nanoplatelet Composites." Nano letters 12 (2012) 1203.
R. Zhifeng, Z. Liu, J. Sui, Y. Lan, and W. Liu. Materials for Near-Room Temperatures, Advanced Thermoelectrics (2017) 67-106. CRC Press.
Z. Guanhua, H. Qin, J. Teng, J. Guo, Q. Guo, X. Dai, Z. Fang, and K. Wu, "Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3", Applied Physics Letters 95 (2009) 053.
I. A. Nechaev, R. C. Hatch, M. Bianchi, D. Guan, C. Friedrich, I. Aguilera, J. L. Mi et al., "Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment", Phys. Rev. B 87 (2013) 121.
C. R. Joseph, H. Ji, K. M. Fuccillo, Q. D. Gibson, and Y. San Hor, "Crystal structure and chemistry of topological insulators." Journal of Materials Chemistry C 1 (2013) 3176.
H. Köhler, "Non‐Parabolic E (k) Relation of the Lowest Conduction Band in Bi2Te3", Physica Status Solidi (b) 73 (1976) 95.
N. F. Hinsche, B. Y. Yavorsky, M. Gradhand, M. Czerner, M. Winkler, J. König, H. Böttner, I. Mertig, and P. Zahn. "Thermoelectric transport in Bi2Te3/Sb2Te3 superlattices", Phys. Rev. B 86 (2012) 085.
S. J. Youn and A. J. Freeman, "First-principles electronic structure and its relation to thermoelectric properties of Bi2Te3", Phys. Rev. B 63 (2001) 085.
S. M. Muhammet S. Toprak, S. Li, M. Johnsson, and M. Muhammed. "Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3)." Journal of Materials Chemistry 22 (2012) 725.
R. M. Steven, N. E. Timms, W. Pantleon, and P. Trimby. "Quantitative characterization of plastic deformation of zircon and geological implications." Contributions to Mineralogy and Petrology 153 (2007) 625.
F. Bahabri. "Investigation of the structural and optical properties of bismuth telluride (Bi2Te3) thin films", Life Sci. J 9 (2012) 290.
S. K. Mishra, S. Satpathy, and O. Jepsen, "Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide." Journal of Physics: Condensed Matter 9 (1997) 461.
P. Blood and J. W. Orton, "The electrical characterisation of semiconductors", Reports on Progress in Physics 41 (1978) 157.
J. A. Bland and S. J. Basinski, "The crystal structure of Bi2Te2Se", Canadian Journal of Physics 39 (1961) 1040.
N. Seizo, "The crystal structure of Bi2Te3−xSex", Journal of Physics and Chemistry of Solids 24 (1963) 479.
G. M. Sheldrick, "Program for the refinement of crystal structures", SHELXL97 (1997).
G. P. Srivastava and D. Weaire, "The theory of the cohesive energies of solids", Advances in Physics 36 (1987) 463.
D. M. Rowe, Thermoelectrics Handbook Nano to Macro, CRC Taylor & Francis, Boca Raton (2006).
S. Shuaib, A. Paul, M. Salmani-Jelodar, C. Jeong, G. Klimeck, and M. Lundstrom. "Relating electronic structure to thermoelectric device performance." arXiv preprint arXiv (2011) 1110.
J. M. Ziman, "Approximate calculation of the anisotropy of the relaxation time of the conduction electrons in the noble metals." Physical Review 121 (1961) 1320.
D. d'Humieres, "Multiple–relaxation–time lattice Boltzmann models in three dimensions", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360 (2002) 437